The Cycle Space of an Infinite Graph
نویسنده
چکیده
Finite graph homology may seem trivial, but for infinite graphs things become interesting. We present a new approach that builds the cycle space of a graph not on its finite cycles but on its topological circles, the homeomorphic images of the unit circle in the space formed by the graph together with its ends. Our approach permits the extension to infinite graphs of standard results about finite graph homology – such as Tutte’s generating theorem, Whitney’s duality theorem, MacLane’s planarity criterion, the Tutte/Nash-Williams tree packing theorem – whose infinite versions would otherwise fail. A notion of end degrees motivated by these results opens up new possibilities for an ‘extremal’ branch of infinite graph theory. Numerous open problems are suggested.
منابع مشابه
On trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملThe Cycle Spaces of an Infinite Graph
The edge space of a finite graph G = (V,E) over a field F is simply an assignment of field elements to the edges of the graph. The edge space can equally be thought of us an |E|-dimensional vector space over F. The cycle space and bond space are the subspaces of the edge space generated by the cycle and bonds of the graph respectively. It is easy to prove that the cycle space and bond space are...
متن کاملThe bond and cycle spaces of an infinite graph
Bonnington and Richter defined the cycle space of an infinite graph to consist of the sets of edges of subgraphs having even degree at every vertex. Diestel and Kühn introduced a different cycle space of infinite graphs based on allowing infinite circuits. A more general point of view was taken by Vella and Richter, thereby unifying these cycle spaces. In particular, different compactifications...
متن کاملCycle-cocycle partitions and faithful cycle covers for locally finite graphs
By a result of Gallai, every finite graph G has a vertex partition into two parts each inducing an element of its cycle space. This fails for infinite graphs if, as usual, the cycle space is defined as the span of the edge sets of finite cycles in G. However we show that, for the adaptation of the cycle space to infinite graphs recently introduced by Diestel and Kühn (which involves infinite cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 14 شماره
صفحات -
تاریخ انتشار 2005